Geometry of large genus flat surfaces with V. Delecroix, P. Zograf, A. Zorich

Elise Goujard - IMB

Göttingen WiMGo conference Sept 2023

Square-tiled surface

Definition

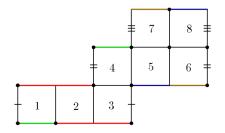
A **square-tiled surface** (or **origami**) is an oriented compact connected surface obtained by gluing a finite number of isometric squares along parallel sides by translation (right \leftrightarrow left, up \leftrightarrow down).

Square-tiled surface

Definition

A **square-tiled surface** (or **origami**) is an oriented compact connected surface obtained by gluing a finite number of isometric squares along parallel sides by translation (right \leftrightarrow left, up \leftrightarrow down).

Labelled origami: squares are numbered

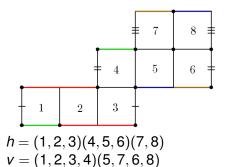


Square-tiled surface

Definition

A square-tiled surface (or origami) is an oriented compact connected surface obtained by gluing a finite number of isometric squares along parallel sides by translation (right \leftrightarrow left, up \leftrightarrow down).

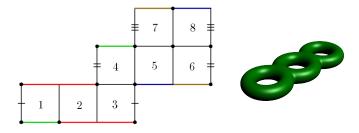
Labelled origami: squares are numbered



Equivalent definition

A labelled origami with N squares is a pair of permutations $(h, v) \in S_N \times S_N$ acting transitively on $\{1, ..., N\}$.

topology (genus)



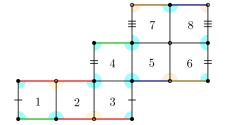
- topology (genus)
- flat metric with conical singularities (coming from the euclidean metric on $\mathbb{R}^2)$

Degre k_i of a singularity: number of extra turns.

Euler-Poincaré

$$2g-2=\sum_i k_i.$$

 $k_1 + 1, \dots, k_n + 1$ is the cycle type of $v^{-1}h^{-1}vh$.



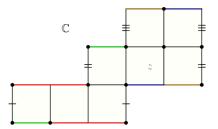
$$g = 3, k = 4$$

 $v^{-1}h^{-1}vh = (2,7,3,4,6)$

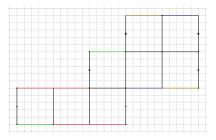
Geometry of large genus flat surfaces

- topology (genus)
- flat metric with conical singularities (coming from the euclidean metric on $\mathbb{R}^2)$
- area: number of squares

- topology (genus)
- flat metric with conical singularities (coming from the euclidean metric on $\mathbb{R}^2)$
- area: number of squares
- orientation, complex structure, holomorphic 1-form $\omega = dz$



- topology (genus)
- flat metric with conical singularities (coming from the euclidean metric on \mathbb{R}^2)
- area: number of squares
- orientation, complex structure, holomorphic 1-form $\omega = dz$
- pair of transverse foliations (horizontal and vertical)

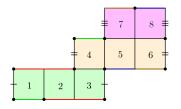


Cylinders

Definition

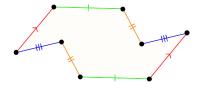
A cylinder is a maximal collection of parallel closed geodesics

• 3 cylinders SQT with 8 squares, genus 3, one singularity of degree 4



• 1 cylinder SQT with 8 squares, genus 3, one singularity of degree 4.

Translation surfaces



Flat metric Conical angles $(d + 1) \cdot 2\pi$

↕

Riemann surface with a holomorphic 1-form (Abelian differential) zeros of degree *d*

Gauss-Bonnet / Euler-Poincaré:

$$\sum_i d_i = 2g - 2$$

Pair of transverse foliations (horizontal and vertical)

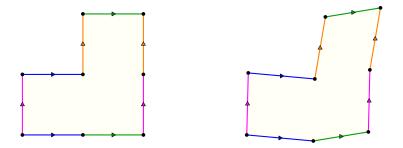
E.Goujard (IMB)

Geometry of large genus flat surfaces

 $\mathcal{H}_g = \{ \text{translation surfaces of genus } g \} / \text{cut and paste} = \bigsqcup_{d \vdash 2g-2} \mathcal{H}(\underline{d})$

$$\begin{aligned} \mathcal{H}(\underline{d}) &= \mathcal{H}(d_1, d_2, \dots, d_n) \\ &= \{ \text{surfaces in } \mathcal{H}_g \text{ with conical angles } (d_i + 1)2\pi \} \end{aligned}$$

- $\begin{aligned} \mathcal{H}_g &= \{ \text{translation surfaces of genus } g \} / \text{cut and paste} = \bigsqcup_{\underline{d} \vdash 2g-2} \mathcal{H}(\underline{d}) \\ &= \mathcal{H}(\underline{d}_1, \underline{d}_2, \dots, \underline{d}_n) \\ &= \{ \text{surfaces in } \mathcal{H}_g \text{ with conical angles } (\underline{d}_i + 1) 2\pi \} \end{aligned}$
- Local coordinates: (independent) sides of the polygon



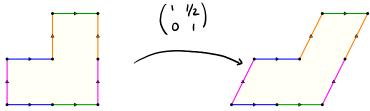
 $\mathcal{H}_{g} = \{ \text{translation surfaces of genus } g \} / \text{cut and paste} = \bigsqcup_{\underline{d} \vdash 2g-2} \mathcal{H}(\underline{d})$ $\mathcal{H}(d) = \mathcal{H}(d_{1}, d_{2}, \dots, d_{n}) \}$

$$(\underline{a}) = \mathcal{H}(a_1, a_2, \dots, a_n)$$

= {surfaces in \mathcal{H}_g with conical angles $(d_i + 1)2\pi$ }

• Local coordinates: (independent) sides of the polygon $\mathcal{H}(k_1, \ldots, k_n)$ is a complex orbifold of dimension d = 2g + n - 1.

- $\begin{array}{ll} \mathcal{H}_{g} = \{ \text{translation surfaces of genus } g \} / \text{cut and paste} = \bigsqcup_{\underline{d} \vdash 2g-2} \mathcal{H}(\underline{d}) \\ \mathcal{H}(\underline{d}) &= \mathcal{H}(d_{1}, d_{2}, \ldots, d_{n}) \\ &= \{ \text{surfaces in } \mathcal{H}_{g} \text{ with conical angles } (d_{i} + 1)2\pi \} \end{array}$
- Local coordinates: (independent) sides of the polygon *H*(*k*₁,...,*k*_n) is a complex orbifold of dimension *d* = 2*g* + *n* − 1. *SL*(2, ℝ) action



 $\mathcal{H}_{g} = \{ \text{translation surfaces of genus } g \} / \text{cut and paste} = \bigsqcup_{\underline{d} \vdash 2g-2} \mathcal{H}(\underline{d})$

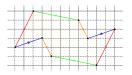
$$\mathcal{H}(\underline{d}) = \mathcal{H}(d_1, d_2, \dots, d_n)$$

= {surfaces in \mathcal{H}_q with conical angles $(d_i + 1)2\pi$ }

- Local coordinates: (independent) sides of the polygon $\mathcal{H}(k_1, \ldots, k_n)$ is a complex orbifold of dimension d = 2g + n 1.
- $SL(2,\mathbb{R})$ action
- Lebesgue measure in local coordinates

 \rightarrow *SL*(2, \mathbb{R})-invariant measure on the stratum $\mathcal{H}(k_1, \ldots k_n)$

- $\begin{aligned} \mathcal{H}_{g} &= \{ \text{translation surfaces of genus } g \} / \text{cut and paste} = \bigsqcup_{\underline{d} \vdash 2g-2} \mathcal{H}(\underline{d}) \\ &= \mathcal{H}(\underline{d}_{1}, d_{2}, \dots, d_{n}) \\ &= \{ \text{surfaces in } \mathcal{H}_{g} \text{ with conical angles } (d_{i} + 1)2\pi \} \end{aligned}$
- Local coordinates: (independent) sides of the polygon
- $\mathcal{H}(k_1, \ldots, k_n)$ is a complex orbifold of dimension d = 2g + n 1. • $SL(2, \mathbb{R})$ action
- Lebesgue measure in local coordinates
 - \rightarrow SL(2, \mathbb{R})-invariant measure on the stratum $\mathcal{H}(k_1, \ldots, k_n)$
- Square-tiled surfaces are "integer" points in the stratum



 $\mathcal{H}_{g} = \{ \text{translation surfaces of genus } g \} / \text{cut and paste} = \bigsqcup_{\underline{d} \vdash 2g-2} \mathcal{H}(\underline{d})$

$$\mathcal{H}(\underline{d}) = \mathcal{H}(d_1, d_2, \dots, d_n)$$

= {surfaces in \mathcal{H}_g with conical angles $(d_i + 1)2\pi$ }

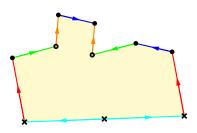
• Local coordinates: (independent) sides of the polygon $\mathcal{H}(k_1, \ldots, k_n)$ is a complex orbifold of dimension d = 2g + n - 1.

- $SL(2,\mathbb{R})$ action
- Lebesgue measure in local coordinates
 - \rightarrow *SL*(2, \mathbb{R})-invariant measure on the stratum $\mathcal{H}(k_1, \ldots, k_n)$
- Square-tiled surfaces are "integer" points in the stratum

 $|\{\text{SQT of type}(k_1,\ldots,k_n) \text{ with } \leq N \text{ squares}\}| \sim cN^d \text{ as } N \to \infty$

 $c = Vol\mathcal{H}(k_1, \ldots, k_n)$ is the Masur-Veech volume of $\mathcal{H}(k_1, \ldots, k_n)$.

Half-translation surfaces ans SQTs: strata $Q(\underline{k})$



Flat metric Conical angles $(k + 2) \cdot \pi$

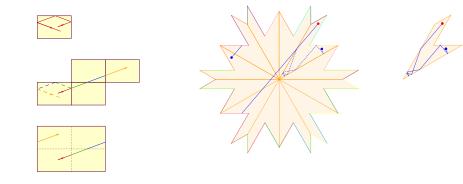
\$

Riemann surface with a quadratic differential (at most simple poles) singularities of order $k \ge -1$

Example of a SQT in the stratum Q(2, -1, -1) (genus 1). 2 cylinders

Why do we care about (half-)translation surfaces and their moduli spaces?

Motivation: rational polygonal billiards



Why do we care about (half-)translation surfaces and their moduli spaces?

Dynamical behaviour on individual surfaces $\iff SL(2, \mathbb{R})$ -orbit closure

Theorem (Lelièvre-Monteil-Weiss, 2016)

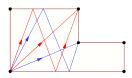
For any rational billiard P, for any $x \in P$, there are at most finitely many points y for which there is no billiard trajectory between x and y.

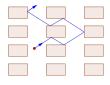
Theorem (Eskin-Mirzakhani, E-M-Mohammadi 2015, 2018)

Description and structure of the $SL(2, \mathbb{R})$ -orbit closures in the moduli space and classification of the $SL(2, \mathbb{R})$ -invariant measures.

Why do we care specifically about square-tiled surfaces?

Counting square-tiled surfaces provide estimations for the volumes of the moduli spaces and other quantitative invariants.





Theorem (Athreya-Eskin-Zorich, 2012)

As $L \to \infty$ the number of trajectories in the red family is $\frac{1}{2\pi} \frac{L^2}{area}$. As $L \to \infty$ there are 4 times more trajectories in the blue family. Theorem (Delecroix-Hubert-Lelièvre, 2011)

The diffusion rate for the wind-tree model is $\frac{2}{3}$:

diam(traj. at t)
$$\sim t^{2/3}$$
.

E.Goujard (IMB)

Geometry of large genus flat surfaces

Equidistribution of SQTs and uncorrelation results

Square-tiled surfaces of type (k_1, \ldots, k_n) with "fixed combinatorics"

- number of horizontal cylinders
- number of horizontal and vertical cylinders
- how cylinders are glued together
- topological type of cylinders (e.g. separating/non separating)

Example of a SQT in $\mathcal{H}(5)$ with 1 hor. cyl. (3 vert.cyl.):

Example of a SQT in $\mathcal{H}(5)$ with 1 hor. cyl. and 1 vert. cyl.:

Equidistribution of SQTs and uncorrelation results

Theorem

"The SQTs with fixed combinatorics equidistribute in the stratum". E.g:

$$\lim_{N \to \infty} \frac{\left| \{ 1 \text{-cyl } SQT \text{ of type } \underline{k} \text{ with } \leq N \text{ squares} \} \right|}{N^d} = cyl_1 > 0$$

$$\left| \{ 1 \text{-cyl } SQT \text{ of type } k \text{ with } 1 \text{ vert. cyl. and } < N \text{ sg.} \} \right|$$

 $\lim_{N \to \infty} \frac{|\nabla r cyr \delta cr brigbe \underline{k} whith vert. cyr. and <math>\leq N sq. f|}{N^d} = cyl_{1,1} > 0$

where d is the dimension of the ambiant stratum.

Theorem

"Hor. combinatorics and vert. combinatorics are asympt. uncorrelated." E.g.

$$\frac{cyl_{1,1}}{cyl_1}=\frac{cyl_1}{Vol}.$$

23 Sept. 2019

Interlude on multicurves

Fix *S* a smooth oriented closed surface of genus $g \ge 2$.

Interlude on multicurves

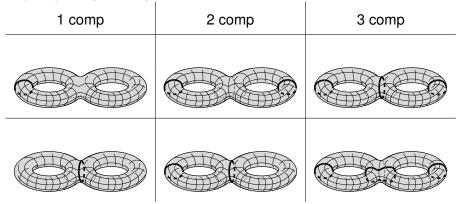
Fix *S* a smooth oriented closed surface of genus $g \ge 2$.

A *multicurve* on *S* is a formal sum $\gamma = \sum_{i=1}^{k} m_i \gamma_i$ with $m_i \in \mathbb{Z}_+$ and γ_i are non-contractible simple closed curves on *S* pairwise non-isotopic (up to free homotopy).

If all $m_i = 1$ we say that γ is *reduced*.

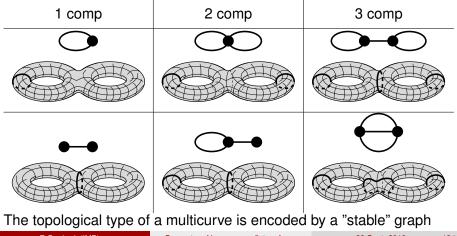
Topological types of reduced multicurves for g = 2

Topological type of a multicurve: MCG orbit: topology of the pieces (genus, number of boundaries) after cutting along the curves, and the way they are glued together.



Topological types of reduced multicurves for g = 2

Topological type of a multicurve: MCG orbit: topology of the pieces (genus, number of boundaries) after cutting along the curves, and the way they are glued together.



E.Goujard (IMB)

Geometry of large genus flat surfaces

Result of Mirzakhani on the count of multicurves

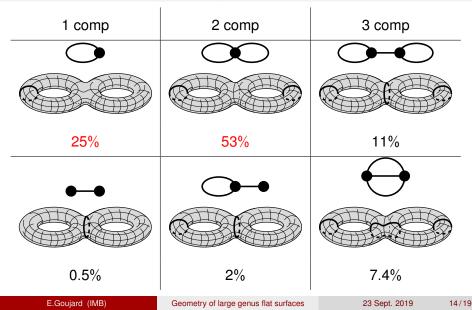
Theorem (Mirzakhani '08)

For any multicurve γ_0 and any hyperbolic surface X of genus g

$$\begin{aligned} & \mathsf{Card}\{\gamma: \textit{top. type of } \gamma \textit{ is } [\gamma_0] \textit{ and } \ell(\gamma) \leq L\} \sim \mathcal{B}(X) \cdot \frac{\mathcal{C}(\gamma_0)}{b_g} \cdot L^{6g-6} \,, \end{aligned}$$
$$& \textit{as } L \to +\infty, \textit{ where } b_g := \int_{\mathcal{M}_g} \mathcal{B}(X) dX = \sum_{all \, [\gamma_0]} \mathcal{C}(\gamma_0) \end{aligned}$$

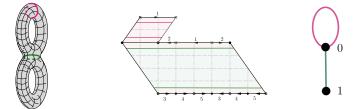
Relation to multicurves

Example: frequencies $\frac{c(\gamma_0)}{b_g}$ for g = 2



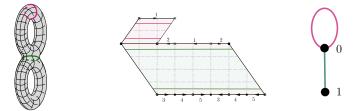
Combinatorics of SQT and multicurves on surfaces

For a (half-translation) square-tiled surface, the core curves of each cylinder form a reduced multicurve on the surface.



Combinatorics of SQT and multicurves on surfaces

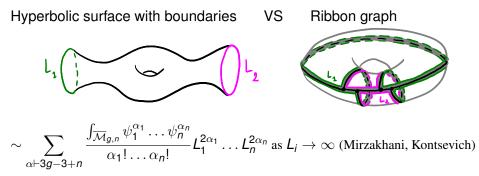
For a (half-translation) square-tiled surface, the core curves of each cylinder form a reduced multicurve on the surface.



Fact: The frequency $c(\gamma_0)/b_g$ of multicurves of type γ_0 and the frequency c/Vol of SQTs of corresponding topological type **coincide**!

Examples: 1-component multicurves/ 1-cylinder SQTs, Separating curves/separating cylinders, etc.

Why frequencies are the same?



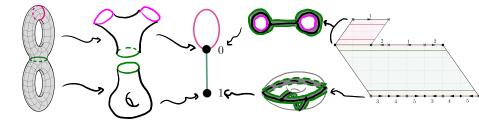
Facts (Bowditch-Epstein, Mondello, Do, ...):

- Moduli spaces are homeomorphic
- The Kontsevich volume form is a limit of Weil-Petersson volume forms (after some renormalization)
- Hyperbolic surfaces with large boundaries "resemble" ribbon graphs.

Why frequencies are the same?

Cut hyperbolic surfaces along geodesics:

Cut (half-translation) SQTs along cylinders:



The pieces are glued together along the same "stable" graph (topological type of the multicurve / the decomposition into cylinders).

Large genus asymptotics: half-translation case

Here we assume that the half-translation surfaces have no singularities of angle π / the hyperbolic surface has no cusps.

• Separating 1-cylinder SQTs / simple closed curves

Theorem

$$rac{c(sep)}{c(\textit{nonsep})}\sim \sqrt{rac{2}{3\pi g}}\cdot rac{1}{4^g} \quad \textit{as }g
ightarrow \infty.$$

Proportion of 1-cylinder surfaces / 1-component multicurves

Theorem

$$rac{cyl_1}{{\sf Vol}}\sim \sqrt{rac{\pi}{24g}} \quad {\it as} \ g
ightarrow \infty.$$

17/19

Large genus asymptotics: half-translation case

• Distribution of number of cylinders / number of components:

Theorem

It converges in a strong sense to the Poisson distribution of parameter $\lambda_g = \log(6g - 6)/2$.

Same convergence as the the number of cycles of random permutations to $Poi_{log(n)}$ [Hwang,Nikeghbali-Zeindler].

Large genus asymptotics: half-translation case

• Distribution of number of cylinders / number of components:

Theorem

It converges in a strong sense to the Poisson distribution of parameter $\lambda_g = \log(6g - 6)/2$.

Same convergence as the the number of cycles of random permutations to $Poi_{log(n)}$ [Hwang,Nikeghbali-Zeindler].

• Global separation:

Theorem

All singularities of a SQT are located on the same horizontal layer with probability that tends to 1 when g tends to infinity. A reduced multicurve does not separate the surface with probability that tends to 1 when g tends to infinity.

Large genus asymptotics: translation case

Proportion of 1-cylinder surfaces

Theorem

$$rac{cyl_1}{Vol}\sim rac{1}{4g} \quad as \ g
ightarrow \infty.$$

It holds for SQTs of fixed type \underline{k} (stratum $\mathcal{H}(\underline{k})$).

Large genus asymptotics: translation case

Proportion of 1-cylinder surfaces

Theorem

$$rac{cyl_1}{ ext{Vol}}\sim rac{1}{4g} \quad ext{ as } g
ightarrow \infty.$$

It holds for SQTs of fixed type \underline{k} (stratum $\mathcal{H}(\underline{k})$).

Distribution of number of cylinders

Conjecture

It converges to the distribution of the number of cycles of random uniform permutations of S_{2g+n-1} (uniformly on the type $\underline{k} \dashv 2g - 2$).

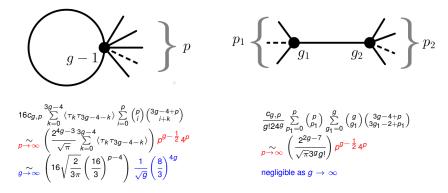
Outline of the proof: recent advances

 $Vol(Q_{g,p})$ and $Vol(H_g)$

- Eskin-Okounkov \sim '00, '05: algorithms for small dimension
- Athreya-Eskin-Zorich '12: closed formulas for Vol Q_{0,p}
- Chen-Möller-Zagier '18 Vol (\mathcal{H}_g) as $g \to \infty$ (gen. Aggarwal '19)
- DGZZ '18, $Vol(Q_{g,p})$ as a sum over stable graphs
- Chen-Möller-Sauvaget-Zagier '19: $Vol(H_g)$ as Hodge integrals
- Andersen-Borot-Charbonnier-Delecroix-Giacchetto-Lewanski-Wheeler '19: topological recursion for Vol(Q_{g,p}) (from DGZZ '18)
- Chen-Möller-Sauvaget '19 $\mathsf{Vol}(\mathcal{Q}_{g,p})$ as Hodge integrals, and $p \to \infty$
- Aggarwal '19 Vol $(\mathcal{Q}_{g,p})$ as $g \to \infty$ based on [DGZZ '18].
- Kazarian '19, Yang-Zagier-Zhang '20: quadratic recursion for Vol(Q_{g,p}) based on [CMS].

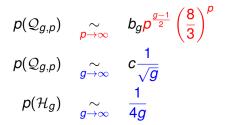
$cyl_1(\mathcal{Q}_{g,p})$ and $cyl_1(\mathcal{H}_g)$

- DGZZ Explicit formula for cyl₁(H_g) (via characters of the symmetric group)
- DGZZ Explicit formula for $cyl_1(\mathcal{Q}_{g,p})$ as a sum over stable graphs:



$$p = cyl_{1,1}/cyl_1 = cyl_1/Vol$$

 Proving the following asymptotics of p_{g,p} or p_g by direct combinatorial arguments is still an open problem!



Results : distribution of the number of components

For a random variable X taking values in \mathbb{Z}_+ ,

$$\mathbb{E}(t^X) = \sum_{k=1}^{\infty} \mathbb{P}(X=k)t^k.$$

Example : Poisson distribution of parameter λ

$$\mathbb{P}(X=k)=rac{\lambda^k e^{-\lambda}}{k!}, \quad \mathbb{E}(t^X)=e^{\lambda(t-1)}$$

For X and Y independent, $\mathbb{E}(t^{X+Y}) = \mathbb{E}(t^X)\mathbb{E}(t^Y)$.

Definition

 X_n converges mod-Poisson with parameters λ_n and limiting function G(t) if $\exists R > 1$, $\varepsilon_n \to 0$, $\forall t \in \mathbb{C}$ such that |t| < R,

$$\mathbb{E}(t^{X_n}) = e^{\lambda_n(t-1)}G(t)(1+O(\varepsilon_n))$$

Results : distribution of the number of components

 X_n converges mod-Poisson with parameters λ_n and limiting function G(t) if $\exists R > 1$, $\varepsilon_n \to 0$, $\forall t \in \mathbb{C}$ such that |t| < R,

$$\mathbb{E}(t^{X_n}) = e^{\lambda_n(t-1)}G(t)(1+O(\varepsilon_n))$$

Theorem (Hwang '94, Nikeghbali-Zeindler '13)

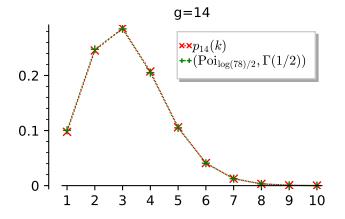
The number of cycles in a uniformly random permutation of S_n converges mod-Poisson with parameter $\lambda_n = \log(n)$ and limiting function $G(t) = \frac{t}{\Gamma(1+t)}$. ($R = \infty$ and ε_n) = 1/n).

Theorem (DGZZ)

The number of cylinders in a random square-tiled surface of genus g (OR number of components of a multicurve on a genus g surface) converges mod-Poisson with parameter $\lambda_g = \log(6g - 6)/2$ and limiting function $G(t) = t \Gamma(\frac{3}{2})/\Gamma(1 + \frac{t}{2})$. (R = 8/7 and $\varepsilon_g = g^{-\delta(U)}$ on compacts U).

E.Goujard (IMB)

Results : distribution of the number of components



Exact distribution of number of components (coeffs of $\mathbb{E}(t^{\mathcal{K}_g(\gamma)})$) Mod-Poisson convergence (coeffs of $e^{\lambda_g(t-1)} \cdot G(t)$)